Self-Adaptive Pre-Processing Methodology for Big Data Stream Mining in Internet of Things Environmental Sensor Monitoring
نویسندگان
چکیده
Over the years, advanced IT technologies have facilitated the emergence of new ways of generating and gathering data rapidly, continuously, and largely and are associated with a new research and application branch, namely, data stream mining (DSM). Among those multiple scenarios of DSM, the Internet of Things (IoT) plays a significant role, with a typical meaning of a tough and challenging computational case of big data. In this paper, we describe a self-adaptive approach to the pre-processing step of data stream classification. The proposed algorithm allows different divisions with both variable numbers and lengths of sub-windows under a whole sliding window on an input stream, and clustering-based particle swarm optimization (CPSO) is adopted as the main metaheuristic search method to guarantee that its stream segmentations are effective and adaptive to itself. In order to create a more abundant search space, statistical feature extraction (SFX) is applied after variable partitions of the entire sliding window. We validate and test the effort of our algorithm with other temporal methods according to several IoT environmental sensor monitoring datasets. The experiments yield encouraging outcomes, supporting the reality that picking significant appropriate variant sub-window segmentations heuristically with an incorporated clustering technique merit would allow these to perform better than others.
منابع مشابه
Mining Internet of Things (IoT) Big Data Streams
Big Data and the Internet of Things (IoT) have the potential to fundamentally shift the way we interact with our surroundings. The challenge of deriving insights from the Internet of Things (IoT) has been recognized as one of the most exciting and key opportunities for both academia and industry. Advanced analysis of big data streams from sensors and devices is bound to become a key area of dat...
متن کاملNetwork Big Data: A Literature Survey on Stream Data Mining
With the rapid development of Internet, the internet of things and other information technology, big data usually exists in cyberspace as the form of the data stream. It brings great benefits for information society. Meanwhile, it also brings crucial challenges on big data mining in the data stream. Recently, academic and industrial communities have a widespread concern on massive data mining p...
متن کاملAdvances in Methods and Techniques for Processing Streaming Big Data in Datacentre Clouds
Internet of Things (IoT) is a part of Future Internet and comprises many billions of Internet connected Objects (ICOs) or ‘things’ where things can sense, communicate, compute and potentially actuate as well as have intelligence, multi-modal interfaces, physical/ virtual identities and attributes. ICOs can include sensors, RFIDs, social media, actuators (such as machines/equipments fitted with ...
متن کاملLow-Cost Adaptive Monitoring Techniques for the Internet of Things
Internet-enabled physical devices with “smart” processing capabilities are becoming the tools for understanding the complexity of the global inter-connected world we inhabit. The Internet of Things (IoT) churns tremendous amounts of data flooding from devices scattered across multiple locations to the processing engines of almost all industry sectors. However, as the number of “things” surpasse...
متن کاملSemantic Challenges for the Variety and Velocity Dimensions of Big Data
With the increasing use of sensor devices, machine-to-machine communications, and social networks there are large volumes of real world data that are multi-modal, dynamic and heterogeneous. Among the main challenges of the Internet of Things, Social Media Analytics and their blending in CyberSocial-Physical Systems is how to deal with large volumes of sensory and social data, and how to extract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 9 شماره
صفحات -
تاریخ انتشار 2017